2016
DOI: 10.1016/j.ins.2016.03.004
|View full text |Cite
|
Sign up to set email alerts
|

Computing sets of graded attribute implications with witnessed non-redundancy

Abstract: a b s t r a c tIn this paper we extend our previous results on sets of graded attribute implications with witnessed non-redundancy. We assume finite residuated lattices as structures of truth degrees and use arbitrary idempotent truth-stressing linguistic hedges as parameters which influence the semantics of graded attribute implications. In this setting, we introduce algorithm which transforms any set of graded attribute implications into an equivalent nonredundant set of graded attribute implications with sa… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
(1 citation statement)
references
References 32 publications
0
1
0
Order By: Relevance
“…From the previous examples, we deduce that when the induced equivalence relation does not provide convex sublattices as equivalence classes, the use of local congruence relations alters the original attribute reduction, increasing the number of attributes to be removed. Moreover, it would be interesting to highlight these attributes, record its relationship with the removed attributes and the impact in attribute implications [4,5,9,19].…”
Section: Analyzing Local Congruencesmentioning
confidence: 99%
“…From the previous examples, we deduce that when the induced equivalence relation does not provide convex sublattices as equivalence classes, the use of local congruence relations alters the original attribute reduction, increasing the number of attributes to be removed. Moreover, it would be interesting to highlight these attributes, record its relationship with the removed attributes and the impact in attribute implications [4,5,9,19].…”
Section: Analyzing Local Congruencesmentioning
confidence: 99%