Antibiotics are nonbiodegradable, can survive at aquatic environments for long periods and they have a big potential bio-accumulation in the environment. They are extensively metabolized by humans, animals and plants. After metabolization, antibiotics or their metabolites are excreted into the aquatic environment. Removal of these compounds from the aquatic environment is feasible by different processes. But antibiotics are not treated in conventional wastewater treatment plants efficiently. During the last years studies with advanced oxidation processes (AOPs) for removal of these pharmaceuticals from waters has shown that they can be useful for removing them fully. Advanced oxidation processes (AOPs) can work as alternatives or complementary method in traditional wastewater treatment, and highly reactive free radicals, especially hydroxyl radicals (OH) generated via chemical (O 3 /H 2 O 2 ,O 3 /OH -), photochemical (UV/O 3 ,O 3 /H 2 O 2 ) reactions, serve as the main oxidant. This study presents an overview of the literature on antibiotics and their removal from water by advanced oxidation processes. It includes almost all types of antibiotics which are consumed by human and veterinary processes. It was found that most of the investigated advanced oxidation treatment processes for the oxidation of antibiotics in water are direct and indirect photolysis with the combinations of H 2 O 2 ,TiO 2 , ozone and Fenton's reagent.