In the Weyl-Dirac non-relativistic hydrodynamics approach, the non-linear interaction between sub-quantum level and particle gives non-differentiable properties to the space. Therefore, the movement trajectories are fractal curves, the dynamics are described by a complex speed field and the equation of motion is identified with the geodesics of a fractal space which corresponds to a Schrödinger non-linear equation. The real part of the complex speed field assures, through a quantification condition, the compatibility between the Weyl-Dirac non-elativistic hydrodynamic model and the wave mechanics. The mean value of the fractal speed potential, identifies with the Shanon informational energy, specifies, by a maximization principle, that the sub-quantum level "stores" and "transfers" the informational energy in the form of force. The wave-particle duality is achieved by means of cnoidal oscillations modes of the state density, the dominance of one of the characters, wave or particle, being put into correspondence with two flow regimes (non-quasi-autonomous and quasi-autonomous) of the Weyl-Dirac fluid. All these show a direct connection between the fractal structure of space and holographic principle.