During the last years, Deep Neural Networks have reached the highest performances in image classification. Nevertheless, such a success is mostly based on supervised and off-line learning: they require thus huge labeled datasets for learning, and once it is done, they cannot adapt to any change in the data from the environment. In the context of brain-inspired computing, we apply Kohonen-based Self-Organizing Maps for unsupervised learning without labels, and we explore original extensions such as the Dynamic SOM that enables continuous learning and the Pruning Cellular SOM that includes synaptic pruning in neuromorphic circuits. After presenting the three models and the experimental setup for MNIST classification, we compare different methods for automatic labeling based on very few labeled data (1% of the training dataset), and then we compare the performances of the three Kohonen-based Self-Organizing Maps with STDP-based Spiking Neural Networks in terms of accuracy, dynamicity and scalability.Index Terms-brain-inspired computing, self-organizing maps, unsupervised learning, embedded image classification.