2010
DOI: 10.1007/s10649-010-9274-1
|View full text |Cite
|
Sign up to set email alerts
|

Conjecturing via reconceived classical analogy

Abstract: Analogical reasoning is believed to be an efficient means of problem solving and construction of knowledge during the search for and the analysis of new mathematical objects. However, there is growing concern that despite everyday usage, learners are unable to transfer analogical reasoning to learning situations. This study aims at facilitating analogy use for conjecturing in discourse-rich mathematics classrooms. We reconceptualized one of the traditional perspectives on analogical reasoning, called classical… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0
3

Year Published

2012
2012
2024
2024

Publication Types

Select...
10

Relationship

1
9

Authors

Journals

citations
Cited by 19 publications
(6 citation statements)
references
References 28 publications
0
3
0
3
Order By: Relevance
“…For example, students directly applied "relationship between area and length of edge" and "differentiation rules of a polynomial" to a given problem situation (Episode 1). Although analogy is known to play a key role in knowledge construction, as Lee and Sriraman (2011) have emphasized, the students could not use analogy productively at the beginning of their inquiries. The students' uses of diagrammatic reasoning were also in the form of directly applying conventional rules to diagrams.…”
Section: Discussionmentioning
confidence: 99%
“…For example, students directly applied "relationship between area and length of edge" and "differentiation rules of a polynomial" to a given problem situation (Episode 1). Although analogy is known to play a key role in knowledge construction, as Lee and Sriraman (2011) have emphasized, the students could not use analogy productively at the beginning of their inquiries. The students' uses of diagrammatic reasoning were also in the form of directly applying conventional rules to diagrams.…”
Section: Discussionmentioning
confidence: 99%
“…Penalaran analogi bergantung pada pengetahuan atau masalah yang sudah dipelajari sebelumnya (English, 2004). Penalaran analogi didefinisikan sebagai kemampuan mengamati, dan menemukan kemiripan antar struktur (Lee dan Sriraman, 2011), serta merujuk pada keterampilan kognitif yang menjadi dasar proses mempersepsikan kemiripan struktur antar masalah (Richland, 2016). Inti dari penalaran analogi adalah menemukan masalah sumber yang mirip dengan masalah target dan memetakan solusi dari masalah sumber ke masalah target (Lee, 1992).…”
Section: Pendahuluanunclassified
“…Karena, penalaran analogi dipergunakan dalam menilai kebenaran suatu argumen matematika (Shadic, 2004) dan mempermudah proses pemecahan masalah matematika (Lee & Sriraman, 2011); (Yıldırım & Ersözlü, 2013); (Bikić & Pikula, 2016); (Kristayulika, et al, 2018). Dalam proses pemecahan masalah matematika, analogi digunakan dalam menemukan atau menciptakan solusi masalah sulituntuk pembentukan penguasaan konsep baru dalam matematika (Sriraman & English, 2005).…”
Section: Pendahuluanunclassified