The physical-chemical surrogate models for S-8, Jet-A and RP-3 fuels to capture their physical and kinetics properties have been developed in this study. n-dodecane (nC12H26), 2,5-dimethylhexane (C8H18-25) and toluene (C6H5CH3) were chosen as candidate surrogate component, and formulated by the Function Group Based Surrogate Fuel (FGBS) methodology. Some important physical properties and spray characteristics for S-8, Jet-A, and RP-3 surrogate models were validated. The results indicate that present surrogate models can well emulate various physical properties so as to accurately reproduce the spray characteristics. And then, a minimal and high-precision surrogate skeletal mechanism that can be suitable for computational fluid dynamics (CFD) simulations, was developed and validated against some fundamental combustion experiments for each individual surrogate component. Furthermore, the performances of surrogate models which contains the surrogate formulation and associated skeletal mechanism were validated against the experimental data on ignition delay times (IDTs), species concentration profiles and laminar flame speeds (Su0) in a wide range of conditions. Finally, the surrogate fuels were used to combustion CFD simulations to model spray combustion process in a constant volume combustion chamber. It can be seen that the agreements between the simulation and experiment in fundamental and spray combustion characteristics are reasonably good, which proves that present surrogate models are accurate and robust to be applied in CFD simulations.