Tau neutrinos are unique cosmic messengers, especially at extreme energies. When they undergo a charged-current interaction, the short lifetime of the produced tau gives rise to secondary tau neutrinos that carry a significant fraction of the primary neutrino energy. This effect, known as tau neutrino regeneration, has not been applied to its full potential in current generation neutrino experiments. In this work, we present an updated calculation of tau neutrino regeneration, and explore its implications for two scenarios: the recent anomalous ANITA events and the cosmogenic neutrino flux. For the former, we investigate the idea of localized emission and find that the maximum secondary neutrino flux allowed by IceCube measurements implies a primary flux that is incompatible with the ANITA observation, regardless of the assumed source energy spectrum. For the latter, we study the prospect of detecting the cosmogenic neutrino flux of regenerated PeV neutrinos with current and next generation neutrino detectors.