2016
DOI: 10.15587/1729-4061.2016.86171
|View full text |Cite
|
Sign up to set email alerts
|

Construction of optimal wire sensor network for the area of complex shape

Abstract: Розглядається задача побудови провідний сенсор-ної мережі для області складної форми. Для моде-лювання умов задачі використовуються phi-функ-ції і нові функції приналежності точки області. Будується математична модель спільної задачі покриття і трасування у вигляді задачі нелінійної оптимізації. Пропонуються ефективні алгоритми пошуку локально-оптимальних рішень. Наводяться результати обчислювальних експериментів і порів-няння отриманих результатів Ключові слова: кругове покриття, область склад-ної форми, трас… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0

Year Published

2019
2019
2021
2021

Publication Types

Select...
2
1

Relationship

2
1

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 10 publications
0
4
0
Order By: Relevance
“…For the analytical description of these limitations, the phi-function apparatus has been advanced, in particular, quasi-phi functions, which showed its effectiveness and adequacy in solving multi-numerical applied optimization problems for the arrangement of three-dimensional bodies and two-dimensional objects (cutting, packing, and coverage) [3][4][5][6][7][8][9][10][11][12][13][14][15][16][17].…”
Section: Discussion Of Results From the Implementation Of The Constructed Mathematical Models And Their Practical Usementioning
confidence: 99%
See 1 more Smart Citation
“…For the analytical description of these limitations, the phi-function apparatus has been advanced, in particular, quasi-phi functions, which showed its effectiveness and adequacy in solving multi-numerical applied optimization problems for the arrangement of three-dimensional bodies and two-dimensional objects (cutting, packing, and coverage) [3][4][5][6][7][8][9][10][11][12][13][14][15][16][17].…”
Section: Discussion Of Results From the Implementation Of The Constructed Mathematical Models And Their Practical Usementioning
confidence: 99%
“…That makes it possible to describe the optimization tasks of geometric design (cutting, packing, covering, and partitioning) in the form of nonlinear programming tasks and has a wide range of applications. Thus, the theory of optimization geometric design [3] is intended to solve a series of applied optimization problems of packing [14], parsing [15], coverage [16], traced coverage [17]. These tasks relate to devising energy-and resource-saving technologies in priority sectors of the national economy in the automation and modeling of the processes of arrangement of objects of different physical nature.…”
Section: Literature Review and Problem Statementmentioning
confidence: 99%
“…The area that the sensor controls is shown as a circle. Then, the qualities of an adequate model of control and monitoring systems can be considered the circular coverage (circles) of the region R 2 with additional restrictions arising from the physical characteristics of the equipment used (Antoshkin & Pankratov, 2016).…”
Section: Domain Descriptionmentioning
confidence: 99%
“…Based on the elaboration of the approach described in [19], a mathematical model of the problem of covering an arbitrary domain with identical circles is proposed in [20]. The model uses phi-functions [21] and quasi phi-functions [22].…”
Section: Related Papers and Problem Formulationmentioning
confidence: 99%