We address the problem of retrieving chess game positions similar to a given query position from a collection of archived chess games. We investigate this problem from an information retrieval (IR) perspective. The advantage of our proposed IR-based approach is that it allows using the standard inverted organization of stored chess positions, leading to an efficient retrieval. Moreover, in contrast to retrieving exactly identical board positions, the IR-based approach is able to provide approximate search functionality. In order to define the similarity between two chess board positions, we encode each game state with a textual representation. This textual encoding is designed to represent the position, reachability and the connectivity between chess pieces. Due to the absence of a standard IR dataset that can be used for this search task, a new evaluation benchmark dataset was constructed comprising of documents (chess positions) from a freely available chess game archive. Experiments conducted on this dataset demonstrate that our proposed method of similarity computation, which takes into account a combination of the mobility and the connectivities between the chess pieces, performs well on the search task, achieving MAP and nDCG values of 0.4233 and 0.6922 respectively.