2003
DOI: 10.1145/945511.945517
|View full text |Cite
|
Sign up to set email alerts
|

Continuous random variate generation by fast numerical inversion

Abstract: The inversion method for generating non-uniform random variates has some advantages compared to other generation methods, since it monotonically transforms uniform random numbers into nonuniform random variates. Hence it is the method of choice in the simulation literature. However, except for some simple cases where the inverse of the cumulative distribution function is a simple function we need numerical methods. Often inversion by "brute force" is used, applying either very slow iterative methods or linear … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
54
0
3

Year Published

2006
2006
2020
2020

Publication Types

Select...
3
2
2

Relationship

1
6

Authors

Journals

citations
Cited by 65 publications
(57 citation statements)
references
References 17 publications
(16 reference statements)
0
54
0
3
Order By: Relevance
“…In [6] a mechanical method is developed for the approximation of arbitrary inverse CDFs by adaptively splitting the domain into intervals and then approximating these intervals with Hermite polynomials. Another automatic method for sampling from arbitrary distributions is based on the ratio-of-uniforms method [10], which relies on sampling from a 2D plane in such a way that the ratio of the co-ordinates has the correct distribution.…”
Section: Pdf(d Y)dymentioning
confidence: 99%
“…In [6] a mechanical method is developed for the approximation of arbitrary inverse CDFs by adaptively splitting the domain into intervals and then approximating these intervals with Hermite polynomials. Another automatic method for sampling from arbitrary distributions is based on the ratio-of-uniforms method [10], which relies on sampling from a 2D plane in such a way that the ratio of the co-ordinates has the correct distribution.…”
Section: Pdf(d Y)dymentioning
confidence: 99%
“…When shape parameters are involved (e.g., the gamma and beta distributions), things are more complicated because F −1 then depends on the parameters in a more fundamental manner. Hörmann and Leydold (2003) propose a general adaptive and automatic method that constructs a highly accurate Hermite interpolation method of F −1 . In a one-time setup, their method produces tables for the interpolation Random Number Generation 25 points and coefficients.…”
Section: Inversionmentioning
confidence: 99%
“…Para algunas distribuciones tenemos multitud de algoritmos que nos permiten generar muestras aleatorias. Para el caso de la generación de variables aleatorias Gaussianas, vamos a clasificar los distintos algoritmos en cuatro categorías básicas [59]: Inversión de la Función de Distribución Acumulada (ICDF) [60], métodos basados en transformaciones [61], métodos aceptación-rechazo [62][63] y los métodos recursivos [64]. Los métodos basados en la ICDF simplemente invierten la CDF de la distribución Gaussiana para generar muestras aleatorias Gaussianas.…”
Section: Generación De Variables Aleatorias Gaussianasunclassified
“…La gran ventaja de este método es que permite generar variables aleatorias con CDF arbitrarias [60]. Además la calidad de las muestras generadas únicamente dependerá de la calidad de las muestras del generador de números uniformemente distribuidos.…”
Section: Figura 55 -Funcionamiento Del Método De La Inversiónunclassified
See 1 more Smart Citation