2015
DOI: 10.1007/978-3-319-16766-4_23
|View full text |Cite
|
Sign up to set email alerts
|

Continuous Speech Classification Systems for Voice Pathologies Identification

Abstract: Part 8: Signal Processing in MedicineInternational audienceVoice pathologies identification using speech processing methods can be used as a preliminary diagnostic. The aim of this study is to compare the performance of sustained vowel /a/ and continuous speech task in identification systems to diagnose voice pathologies. The system recognizes between three classes consisting of two different pathologies sets and healthy subjects. The signals are evaluated using MFCC (Mel Frequency Cepstral Coefficients) as sp… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0
3

Year Published

2016
2016
2023
2023

Publication Types

Select...
3
3

Relationship

0
6

Authors

Journals

citations
Cited by 13 publications
(11 citation statements)
references
References 17 publications
0
8
0
3
Order By: Relevance
“…The experimental results for the detection of voice disorders with the FCB are provided in Table 1. These results are obtained with various numbers of Gaussian mixtures, i.e., 8,16,32 and 64. The maximum accuracy is obtained with 32, and this is 99.45%.…”
Section: A Detection Results For Voice Disordersmentioning
confidence: 99%
See 1 more Smart Citation
“…The experimental results for the detection of voice disorders with the FCB are provided in Table 1. These results are obtained with various numbers of Gaussian mixtures, i.e., 8,16,32 and 64. The maximum accuracy is obtained with 32, and this is 99.45%.…”
Section: A Detection Results For Voice Disordersmentioning
confidence: 99%
“…In [32], a system for the classification of various types of disorders is developed by using Mel-frequency cepstral coefficients (MFCC). Three types of vocal fold disorders vocal fold nodules, vocal fold edema, and unilateral paralysis are considered to develop the system.…”
Section: Introductionmentioning
confidence: 99%
“…Otros artículos han trabajado con los coeficientes MFCC (Mel Frequency Cepstral Coefficients) para la clasificación de género [47], reconocimiento de oradores [10], y detección de patologías por medio de señales de voz [7], [15], [48].…”
Section: Características De Las Señales De Audiounclassified
“…Los rangos de asignación factible de las funciones de pertenencia tienen en cuenta el valor mínimo y máximo por cada una de las entradas para el modelo difuso definidas en la Sección 4. Por ejemplo, para un modelo que utilice las primeras tres entradas, los rangos son los definidos en la ecuación (15) Con la normalización de cada uno de estos rangos entre los valores 0 (mínimo) y 1 (máximo), se establece un rango general para todas las entradas y se promueve la exploración factible en los algoritmos de optimización en un espacio fijo de soluciones de acuerdo con los datos procesados.…”
Section: Estructura De Los Modelos Difusos Propuestosunclassified
See 1 more Smart Citation