We report on combined simultaneous temporal and spatial laser pulse shaping by utilizing light polarization properties. Thereto, a setup comprising a temporal pulse shaper, a waveplate, and a spatial shaper was developed and characterized by comparison with simulations. This enables to simultaneously shape one polarization component temporally and spatially while the perpendicular polarization component is modified temporally. The spatially and temporally modulated light fields were recorded and visualized by suitable contour plots, which was particularly demonstrated for cylindrically symmetric pulse profiles. Moreover, temporally and spatially shaped pulses were applied for two-photon excited fluorescence of dyes. These measurements were conducted by scanning third order phase functions for specific spatial pulse components which yields an enhanced contrast difference between fluorescing dyes. The presented temporal and spatial shaping method of ultrashort laser pulses has a high potential for biophotonic applications.