Graph representation learning has become a topic of great interest and many works focus on the generation of high-level, task-independent node embeddings for complex networks. However, the existing methods consider only few aspects of networks at a time. In this paper, we propose a novel framework, named , to learn node embeddings for networks that are simultaneously multilayer, heterogeneous and attributed. We leverage contrastive learning as a self-supervised and task-independent machine learning paradigm and define a cross-view mechanism between two views of the original graph which collaboratively supervise each other. We evaluate our framework on the entity classification task. Experimental results demonstrate the effectiveness of and its variant , showing their capability of exploiting across-layer information in addition to other types of knowledge.