In this paper, the least squares method is used to determine the vertical height of the road space domain. Based on the road estimation method, the active suspension control mode switching model is constructed, and the dynamic characteristics of the vehicle in comfort, safety, and integrated modes are analyzed. The vibration signal is collected by the sensor, and the parameters such as vehicle driving conditions are solved for in reverse. A control strategy for multiple mode switching under different road surfaces and speeds is constructed. At the same time, the particle swarm optimization algorithm (PSO) is used to optimize the weight coefficients of LQR control under different modes, and the dynamic performance of vehicle driving is comprehensively analyzed. The test and simulation results show that the road estimation results under different speeds in the same road section are very close to the results obtained by the detection ruler method, and the overall error is less than 2%. Compared with the active suspension controlled by passive and traditional LQR, the multi-mode switching strategy can achieve a better balance between driving comfort and handling safety and stability, and also improve the driving experience more intelligently and comprehensively.