Thermoelectric cooling is an ideal solution for chip heat dissipation due to its characteristics of no refrigerant, no vibration, no moving parts, and easy integration. Compared with a traditional thermoelectric device, a thin-film thermoelectric device significantly improves the cooling density and has tremendous advantages in the temperature control of electronic devices with high-power pulses. In this paper, the transient cooling performance of a compact thin-film thermoelectric cooler with a horizontal structure was studied. A 3D multi-physics field numerical model with the Thomson effect considered was established. And the effects of impulse current, thermoelectric leg length, pulse current imposition time, and the size of the contact thermal resistance on the cooling performance of the device were comprehensively investigated. The results showed that the model achieved an active cooling temperature difference of 25.85 K when an impulse current of 0.26 A was imposed. The longer the length of the thermoelectric leg was, the more unfavorable it was to the chip heat dissipation. Due to the small contact area between different sections of the device, the effect of contact thermal resistance on the cooling performance of the device was moderate.