Controlled stimuli-responsive release systems are a feasible and effective way to increase the efficiency of pesticides and help improve environmental pollution issues. However, near-infrared (NIR)-responsive systems for encapsulation of pesticides for controlling release have not been reported because of high cost and load ability of conventional NIR absorbers as well as complicated preparation process. Herein, we proposed polydopamine (PDA) microspheres as a photothermal agent owing to their abundant active sites, satisfactory photothermal efficiency, low cost, and easy fabrication, followed by capping with a PNIPAm thermosensitive polymer shell. In this core-shell PDA@PNIPAm hybrid system, the PDA core provided excellent temperature and NIR-light sensitivity as well as high loading capacity, while the PNIPAm applied as both a thermosensitive gatekeeper and a pesticide reservoir. The structure of the PDA@PNIPAm nanocomposites was characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, dynamic light scattering, and thermogravimetric analysis; the results showed that the nanocomposites had a well-defined core-shell configuration for efficient loading of small pesticide molecules. Moreover, the core-shell PDA@PNIPAm nanocomposites exhibited high loading capacity and temperature- or NIR-controlled release performance. Overall, this system has significant potential in controlled drug release and agriculture-related fields as a delivery system for pesticides with photothermal responsive behavior.