The unsteady oscillations of a dissipative oscillator caused by an instantaneous impulse of the force are described. The case is considered when the dissipative force consists of quadratic viscous resistance and dry friction, and the theoretical results are generalized to the case of the sum of three forces. The third is the force of positional friction. Formulas for calculating the ranges of oscillations have been constructed In this case, the Lambert function of negative and positive arguments is used. It is a tabulated special function. Its value can also be calculated using its known approximations in elementary functions. It is shown that, due to the action of the dissipative force, the process of post-pulse oscillations consists of a finite number of cycles and is limited in time. This is due to the presence of dry friction among the resistance components. Examples of calculations that illustrate the possibilities of the stated theory are given. In order to check the reliability of the derived calculation formulas, numerical computer integration of the differential equation of motion was also carried out. The convergence of the numerical results obtained by two different methods is shown. Thus, it has been confirmed that with the help of analytical solutions it is possible to find the extreme displacements of the oscillator without numerically solving its nonlinear differential equation of motion. Using Lambert function and the first integral of the equation of motion made it possible to derive precise calculation formulas for determining the range of oscillations caused by the pulsed load of the oscillator. The derived formulas are suitable for calculating the value of the instantaneous impulse applied to the oscillator, which refers to the inverse problems of mechanics. Thus, by measuring the maximum displacement of the oscillator, it is possible to identify the initial velocity or instantaneous impulse applied to the oscillator. The performed numerical computer integration of the output differential equation confirmed the adequacy of the obtained analytical solutions, which concern not only direct, but also inverse problems of dynamics.