These authors contributed equally to this work.
Abstract:Zika virus (ZIKV) is a flavivirus that has recently been associated with increased incidence of neonatal microcephaly and other neurological disorders. The virus is primarily transmitted by mosquito bite, although other routes of infection have been implicated in some cases. The Aedes aegypti mosquito is considered to be the main vector to humans worldwide, but there is evidence of other mosquito species, including Culex quinquefasciatus, playing a role in the Brazilian outbreak. To test this hypothesis, we experimentally compared the vectorial competence of laboratory-reared A. aegypti and C. quinquefasciatus. We found ZIKV in the not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/073197 doi: bioRxiv preprint first posted online Sep. 2, 2016; 2 midgut, salivary glands, and saliva of artificially fed C. quinquefasciatus. Additionally, we collected ZIKV-infected C. quinquefasciatus from urban areas of high microcephaly incidence in Recife, Brazil. Take into account; these findings indicate that there may be a wider range of vectors for ZIKV than anticipated.Keywords: Zika, microcephaly, Culex, Aedes, vectorial competence, vector control.Zika is classically considered a mild disease whose symptoms include fever, joint pain, rash and, in some cases, conjunctivitis (1). However, the Zika outbreak in Brazil has been associated with an increased incidence of neonatal microcephaly and neurological disorders (2, 3). Zika virus (ZIKV) is a poorly known, small, enveloped RNA virus with ssRNA (+) belonging to the Family Flaviviridae. It was first isolated in April 1947 from a rhesus monkey and in January 1948 from the mosquito species Aedes africanus (4). Since then, several ZIKV strains have been isolated from many samples, mostly mosquitoes, including species from the genera Aedes, Mansonia, Anopheles and Culex (5).The first known Zika epidemic in an urban environment occurred in Micronesia in 2007, with approximately 73% of the human population on Yap island becoming infected (6).Intriguingly, although many Aedes mosquitoes were collected in the field and evaluated for virus detection, no samples were found to be positive for ZIKV (6). Additionally, it is important to highlight that Aedes aegypti (A. aegypti) is absent from most islands in the Micronesia archipelago and is very rare on the islands where it is present (6, 7).There is a global consensus among scientists and health agencies that Aedes spp. are the main ZIKV vector in urban areas (WHO, 2016). This is in part because vector competence experiments for ZIKV have been conducted exclusively for species of this genus, mainly A.aegypti (8, 9). Previous laboratory studies (8, 10) suggested that A. aegypti is a ZIKV vector. not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was . http://dx.doi...