2003
DOI: 10.1090/s1056-3911-03-00374-6
|View full text |Cite
|
Sign up to set email alerts
|

Corrigendum to “Realization of Voevodsky’s motives”

Abstract: One key aim of the author [Realization of Voevodsky's motives, J. Algebraic Geom. 9 (2000), no. 4, 755-799] was to construct a realization functor from Voevodsky's triangulated category of geometrical motives to her own triangulated category of mixed realizations. This note corrects a mistake in this construction. The new argument consists of a rearrangement of the original construction together with a careful analysis of hypercovers of complexes of varieties.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
57
0
18

Year Published

2005
2005
2017
2017

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 55 publications
(76 citation statements)
references
References 3 publications
1
57
0
18
Order By: Relevance
“…Lorsque n = 1, le résultat découle du Lemme 11. 22. Toutefois, nous devons faire attention au problème suivant.…”
Section: On Définit Alors Le Foncteurunclassified
See 1 more Smart Citation
“…Lorsque n = 1, le résultat découle du Lemme 11. 22. Toutefois, nous devons faire attention au problème suivant.…”
Section: On Définit Alors Le Foncteurunclassified
“…-Il y a au moins deux constructions antérieurs d'une réa-lisation étale. La première construction est due à Huber [22,23] qui se restreint aux motifs géo-métriques de Voevodsky au-dessus d'un corps parfait. La seconde construction est due à Ivorra [26] qui construit sa réalisation sur la catégorie de motifs effectifs et géométriques de Voevodsky sur un schéma de base général.…”
Section: Introductionunclassified
“…Choose and fix one of these two, denote it by R, and recall that it is a contravariant tensor functor mapping the pure Tate motive Z(m) to the pure Hodge structure Q(−m) (when R = R σ ) and to the pure Q ℓ -sheaf Q ℓ (−m) (when R = R ℓ ), respectively [Hu,Thm. 2.3.3].…”
Section: Proofmentioning
confidence: 99%
“…Nori's functor (8.2) can be used to recover all the realization functors on DM gm eff (k, Q) constructed by Huber [12]. For instance, one gets a mixed realization functor on DM gm eff (k; R) by taking the composition…”
Section: 2mentioning
confidence: 99%