“…(1) 0.8866 (2) 0.9076 (3) 0.8910 (4) 0.8747 (1,2) 0.8875 (1,3) 0.8593 (1,4) 0.8325 (2,3) 0.8923 (2,4) 0.8721 (3,4) 0.8206 (1,2,3) 0.8637 (1,2,4) 0.8202 (1,3,4) 0.7108 (2,3,4) 0.7970 None 0.9054 Table 4: Performance of a cross-subject trained EEGNet-4,1 model when removing certain filters from the model, then using the model to predict the test set for one randomly chosen fold of the P300 dataset. AUC values in bold denote the best performing model when removing 1, 2 or 3 filters at a time.…”