Despite its continued observational successes, there is a persistent (and growing) interest in extending cosmology beyond the standard model, ΛCDM. This is motivated by a range of apparently serious theoretical issues, involving such questions as the cosmological constant problem, the particle nature of dark matter, the validity of general relativity on large scales, the existence of anomalies in the CMB and on small scales, and the predictivity and testability of the inflationary paradigm. In this paper, we summarize the current status of ΛCDM as a physical theory, and review investigations into possible alternatives along a number of different lines, with a particular focus on highlighting the most promising directions. While the fundamental problems are proving reluctant to yield, the study of alternative cosmologies has led to considerable progress, with much more to come if hopes about forthcoming high-precision observations and new theoretical ideas are fulfilled.Keywords: cosmology -dark energy -cosmological constant problem -modified gravitydark matter -early universe Cosmology has been both blessed and cursed by the establishment of a standard model: ΛCDM. On the one hand, the model has turned out to be extremely predictive, explanatory, and observationally robust, providing us with a substantial understanding of the formation of large-scale structure, the state of the early Universe, and the cosmic abundance of different types of matter and energy. It has also survived an impressive battery of precision observational tests -anomalies are few and far between, and their significance is contentious where they do arise -and its predictions are continually being vindicated through the discovery of new effects (B-mode polarization [1] and lensing [2,3] of the cosmic microwave background (CMB), and the kinetic Sunyaev-Zel'dovich effect [4] being some recent examples). These are the hallmarks of a good and valuable physical theory.On the other hand, the model suffers from profound theoretical difficulties. The two largest contributions to the energy content at late times -cold dark matter (CDM) and the cosmological constant (Λ) -have entirely mysterious physical origins. CDM has so far evaded direct detection by laboratory experiments, and so the particle field responsible for it -presumably a manifestation of "beyond the standard model" particle physics -is unknown. Curious discrepancies also appear to exist between the predicted clustering properties of CDM on small scales and observations. The cosmological constant is even more puzzling, giving rise to quite simply the biggest problem in all of fundamental physics: the question of why Λ appears to take such an unnatural value [5,6,7]. Inflation, the theory of the very early Universe, has also been criticized for being fine-tuned and under-predictive [8], and appears to leave many problems either unsolved or fundamentally unresolvable. These problems are indicative of a crisis.From January 14th-17th 2015, we held a conference in Oslo, Norway to surve...