We use cosmological simulations to study the effects of self-interacting dark matter (SIDM) on the density profiles and substructure counts of dark matter halos from the scales of spiral galaxies to galaxy clusters, focusing explicitly on models with cross sections over dark matter particle mass σ/m = 1 and 0.1 cm 2 /g. Our simulations rely on a new SIDM N-body algorithm that is derived self-consistently from the Boltzmann equation and that reproduces analytic expectations in controlled numerical experiments. We find that well-resolved SIDM halos have constant-density cores, with significantly lower central densities than their CDM counterparts. In contrast, the subhalo content of SIDM halos is only modestly reduced compared to CDM, with the suppression greatest for large hosts and small halo-centric distances. Moreover, the large-scale clustering and halo circular velocity functions in SIDM are effectively identical to CDM, meaning that all of the large-scale successes of CDM are equally well matched by SIDM. From our largest cross section runs we are able to extract scaling relations for core sizes and central densities over a range of halo sizes and find a strong correlation between the core radius of an SIDM halo and the NFW scale radius of its CDM counterpart. We construct a simple analytic model, based on CDM scaling relations, that captures all aspects of the scaling relations for SIDM halos. Our results show that halo core densities in σ/m = 1 cm 2 /g models are too low to match observations of galaxy clusters, low surface brightness spirals (LSBs), and dwarf spheroidal galaxies. However, SIDM with σ/m ≃ 0.1 cm 2 /g appears capable of reproducing reported core sizes and central densities of dwarfs, LSBs, and galaxy clusters without the need for velocity dependence. Higher resolution simulations over a wider range of masses will be required to confirm this expectation. We discuss constraints arising from the Bullet cluster observations, measurements of dark matter density on small-scales and subhalo survival requirements, and show that SIDM models with σ/m ≃ 0.1 cm 2 /g ≃ 0.2 barn/GeV are consistent with all observational constraints.
If dark matter has a large self-interaction scattering cross section, then interactions among dark-matter particles will drive galaxy and cluster halos to become spherical in their centers. Work in the past has used this effect to rule out velocity-independent, elastic cross sections larger than σ/m 0.02 cm 2 /g based on comparisons to the shapes of galaxy cluster lensing potentials and X-ray isophotes. In this paper, we use cosmological simulations to show that these constraints were off by more than an order of magnitude because (a) they did not properly account for the fact that the observed ellipticity gets contributions from the triaxial mass distribution outside the core set by scatterings, (b) the scatter in axis ratios is large and (c) the core region retains more of its triaxial nature than estimated before. Including these effects properly shows that the same observations now allow dark matter self-interaction cross sections at least as large as σ/m = 0.1 cm 2 /g. We show that constraints on self-interacting dark matter from strong-lensing clusters are likely to improve significantly in the near future, but possibly more via central densities and core sizes than halo shapes.
We investigate the effect of self-interacting dark matter (SIDM) on the density profiles of V max 40 km s −1 isolated dwarf dark matter halos -the scale of relevance for the too big to fail problem (TBTF) -using very high-resolution cosmological zoom simulations. Each halo has millions of particles within its virial radius. We find that SIDM models with cross sections per unit mass spanning the range σ/m = 0.5 − 50 cm 2 g −1 alleviate TBTF and produce constant density cores of size 300 − 1000 pc, comparable to the half-light radii of M ∼ 10 5−7 M dwarfs. The largest, lowest density cores develop for cross sections in the middle of this range, σ/m ∼ 5 − 10 cm 2 g −1 . Our largest SIDM cross section run (σ/m = 50 cm 2 g −1 ) develops a slightly denser core owing to mild core-collapse behavior, but it remains less dense than the CDM case and retains a constant density core profile. Our work suggests that SIDM cross sections as large or larger than 50 cm 2 g −1 remain viable on velocity scales of dwarf galaxies (v rms ∼ 40 km s −1 ). The range of SIDM cross sections that alleviate TBTF and the cusp/core problem spans at least two orders of magnitude and therefore need not be particularly fine-tuned.
Like many galaxies of its size, the Milky Way is a disk with prominent spiral arms rooted in a central bar, although our knowledge of its structure and origin is incomplete. Traditional attempts to understand our Galaxy's morphology assume that it has been unperturbed by major external forces. Here we report simulations of the response of the Milky Way to the infall of the Sagittarius dwarf galaxy (Sgr), which results in the formation of spiral arms, influences the central bar and produces a flared outer disk. Two ring-like wrappings emerge towards the Galactic anti-Centre in our model that are reminiscent of the low-latitude arcs observed in the same area of the Milky Way. Previous models have focused on Sgr itself to reproduce the dwarf's orbital history and place associated constraints on the shape of the Milky Way gravitational potential, treating the Sgr impact event as a trivial influence on the Galactic disk. Our results show that the Milky Way's morphology is not purely secular in origin and that low-mass minor mergers predicted to be common throughout the Universe probably have a similarly important role in shaping galactic structure.
The observed central densities of Milky Way dwarf spheroidal galaxies (dSphs) are significantly lower than the densities of the largest (V max ∼ 35 km/s) subhalos found in dissipationless simulations of Galaxy-size dark matter hosts. One possible explanation is that gas removal from feedback can lower core densities enough to match observations. We model the dynamical effects of supernova feedback through the use of a time-varying central potential in high resolution, idealized numerical simulations and explore the resulting impact on the mass distributions of dwarf dark matter halos. We find that in order to match the observed central masses of M ∼ 10 6 M dSphs, the energy equivalent of more than 40,000 supernovae must be delivered with 100% efficiency directly to the dark matter. This energy requirement exceeds the number of supernovae that have ever exploded in most dSphs for typical initial mass functions. We also find that, per unit energy delivered and per cumulative mass removed from the galaxy, single blow-out events are more effective than repeated small bursts in reducing central dark matter densities. We conclude that it is unlikely that supernova feedback alone can solve the "Too Big to Fail" problem for Milky Way subhalos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.