Decentralization has the potential to reduce the scale of the piped distribution network needed to enable non-potable water reuse (NPR) in urban areas by producing recycled water closer to its point of use. However, tradeoffs exist between the economies of scale of treatment facilities and the size of the conveyance infrastructure, including energy for upgradient distribution of recycled water. To adequately capture the impacts from distribution pipes and pumping requirements, site-specific conditions must be accounted for. In this study, a generalized framework (a heuristic modeling approach using geospatial algorithms) is developed that estimates the financial cost, the energy use, and the greenhouse gas emissions associated with NPR (for toilet flushing) as a function of scale of treatment and conveyance networks with the goal of determining the optimal degree of decentralization. A decision-support platform is developed to assess and visualize NPR system designs considering topography, economies of scale, and building size. The platform can be used for scenario development to explore the optimal system size based on the layout of current or new buildings. The model also promotes technology innovation by facilitating the systems-level comparison of options to lower costs, improve energy efficiency, and lower greenhouse gas emissions.