2021
DOI: 10.1016/j.nanoen.2020.105535
|View full text |Cite
|
Sign up to set email alerts
|

Cost-effective mechanochemical synthesis of highly dispersed supported transition metal catalysts for hydrogen storage

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
42
1
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
10

Relationship

1
9

Authors

Journals

citations
Cited by 108 publications
(44 citation statements)
references
References 73 publications
0
42
1
1
Order By: Relevance
“…In order to improve the adsorption and desorption performance of MgH 2 hydrogen storage materials, researchers have modified MgH 2 by alloying [8][9][10][11][12], nanoscaling [13][14][15][16][17][18][19][20], surface modification [21], and catalyst doping [22][23][24][25][26][27][28], among others. The addition of a catalyst can significantly reduce the energy barrier of hydrogen absorption and desorption reactions, thus decreasing the reaction temperature and improving the kinetic performance.…”
Section: Introductionmentioning
confidence: 99%
“…In order to improve the adsorption and desorption performance of MgH 2 hydrogen storage materials, researchers have modified MgH 2 by alloying [8][9][10][11][12], nanoscaling [13][14][15][16][17][18][19][20], surface modification [21], and catalyst doping [22][23][24][25][26][27][28], among others. The addition of a catalyst can significantly reduce the energy barrier of hydrogen absorption and desorption reactions, thus decreasing the reaction temperature and improving the kinetic performance.…”
Section: Introductionmentioning
confidence: 99%
“…These results indicate that Co single atoms are easily stabilized by the PCMP compared to Ni owing to the higher diffusion barriers, electronegativity and low surface free energy. 48,49 C1s, N1s, Ni2p and Co2p core-level XPS spectra were also obtained to analyze the structure of xM@PCMP. The C1s corelevel XPS spectra conrm the formation of the desired structures (Fig.…”
Section: Resultsmentioning
confidence: 99%
“…气相沉积法是基于电弧产生高温使金属瞬间蒸发,在氢气等气体作用下使金属原子经历蒸发、形核、 长大、凝聚等一系列过程,以获得纳米尺寸 Mg。Li 等人 [82] 使用气相沉积法制备了直径范围为 30 至 170 nm 的 Mg 纳米线。直径最小(30 nm)的 Mg 纳米线在 300°C 时 30 min 内吸收 7.6wt% H 2 并释放 6.8wt% H 2 。 此外,30 nm 纳米线的吸/放氢活化能分别降至 34 和 39 kJ mol -1 。Chen 等人 [83] 通过气相沉积法构建了平均尺 寸为 32 nm 的 Mg-V-C 储氢体系,该储氢体系可保持 5.2wt%的储氢量。并且,在 Mg-V-C 吸放氢过程中, 会出现 VH 2 (353K 以下)/V 2 H(353K-673K)/V(673K)相转变,显著提升材料的吸放氢动力学性能,吸 放氢的活化能分别降低到 41 和 67 kJ mol -1 。Lu 等人 [38] (2) Zhang 等 人 [86] [88] 。最近,研究人员试图通过添加催 化剂来改善其动力学性能。Liu 等人 [88,89] 研究了 CeF 3 和 NbF 5 添加到 4MgH 2 -AlH 3 复合材料中的效果。等温 放氢测试表明,CeF 3 和 NbF 5 的添加显著增强了 4MgH 2 -AlH 3 复合材料的放氢动力学,然而该材料的循环储 氢量降低至 3.5wt%。此外,Fan 等人 [90]…”
Section: 气相沉积法unclassified