Both pulmonary arterial hypertension (PAH) and chronic obstructive pulmonary disease (COPD) are risk factors for coronavirus disease 2019 (COVID-19). Patients with lung injury and altered pulmonary vascular anatomy or function are more susceptible to infections. The purpose of the study is to ascertain whether individuals with COPD or PAH are affected synergistically by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Data sources for the construction of a protein-protein interaction (PPI) network and the identification of differentially expressed genes (DEGs) included three RNA-seq datasets from the GEO database (GSE147507, GSE106986, and GSE15197). Then, relationships between miRNAs, common DEGs, and transcription factor (TF) genes were discovered. Functional analysis using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and other databases, as well as the forecasting of antiviral medications for COPD and PAH patients infected with SARS-CoV-2, were also performed. Eleven common DEGs were found in the three datasets, and their biological functions were primarily enriched in the control of protein modification processes, particularly phosphorylation. Growth factor receptor binding reflects molecular function. KEGG analysis indicated that co-DEGs mainly activate Ras, and PI3K-Akt signaling pathways and act on focal adhesions. NFKB1 interacted with HSA-miR-942 in the TF-miRNA-DEGs synergistic regulatory network. Acetaminophen is considered an effective drug candidate. There are some connections between COPD and PAH and the development of COVID-19. This research could aid in developing COVID-19 vaccines and medication candidates that would work well as COVID-19 therapies.