The horizontal-vertical (HV) illusion is a classical example of an asymmetrical perception of size in the vertical and horizontal axes, also known as 'anisotropy of the perceived space'. Several authors argued that the horizontally-oriented ellipse of the binocular visual field might play an important role in the emergence of this illusion. Alternatively, a length bisection bias and size-constancy mechanisms have been advocated to account for the asymmetrical perception in the two dimensions. To investigate this phenomenon, participants are commonly required to estimate the length of two separate lines, one vertical and one horizontal, often arranged in an inverted-T pattern.Here we suggest that this type of stimulus may introduce physical and subjective biases that prevent a fine investigation. In particular, we believe that Petter's rule, that applies to two-dimensional patterns formed by two overlapping surfaces, may play a critical role that will not support an interpretation based on the shape of the binocular visual field nor a length bisection bias.