2018
DOI: 10.1007/978-3-319-76348-4_11
|View full text |Cite
|
Sign up to set email alerts
|

CRF+LG: A Hybrid Approach for the Portuguese Named Entity Recognition

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
4
2
1

Relationship

1
6

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 9 publications
0
2
0
Order By: Relevance
“…A comparison between four tools to recognize NEs in Portuguese texts [2] suggested that the rule-based approach is the most effective for person names. Recently, LGs have been successfully integrated in a hybrid approach to Portuguese NER [12].…”
Section: Introductionmentioning
confidence: 99%
“…A comparison between four tools to recognize NEs in Portuguese texts [2] suggested that the rule-based approach is the most effective for person names. Recently, LGs have been successfully integrated in a hybrid approach to Portuguese NER [12].…”
Section: Introductionmentioning
confidence: 99%
“…O reconhecimento de entidades nomeadas (Named Entity Recognition -NER) tem como objetivo identificar e classificar automaticamente entidades como pessoas, locais e organizac ¸ões e é uma tarefa importante em Extrac ¸ão de Informac ¸ão. As abordagens utilizadas no desenvolvimento de sistemas de NER são: linguística, aprendizado de máquina ou híbrida [Pirovani and Oliveira 2018].…”
Section: Reconhecimento De Entidades Nomeadasunclassified
“…artigo foi utilizado o modelo híbrido CRF+LG [Pirovani and Oliveira 2018], que se baseia no Conditional Random Fields (CRF), uma estrutura probabilística para realizar a marcac ¸ão e segmentac ¸ão de dados de sequência [Lafferty et al 2001]. Neste modelo híbrido, os autores construíram uma Gramática Local (Local Grammar -LG) para auxiliar o CRF a reconhecer as 10 categorias de entidades nomeadas do HAREM 2 .…”
Section: Nesteunclassified
“…As well as the rest of NLP tasks and algorithms, the development of methods and resources for Portuguese are increasing day by day. Some important examples are HAREM and Second HAREM [32], Linguakit [13], or SIEMÊS [33] algorithms and resources for unsupervised named entity recognition, joint with well-known suites such as FreeLing [34] or Standford CoreNLP [35] for Portuguese and related supervised initiatives based on conditional random fields [36]. It is important to mention here similar works only focused on semantic relation extraction [37].…”
Section: Unsupervised Information Extraction In Portuguese: Linguakitmentioning
confidence: 99%