Named Entity Recognition for person names is an important but non-trivial task in information extraction. This article uses a tool that compares the concordances obtained from two local grammars (LG) and highlights the differences. We used the results as an aid to select the best of a set of LGs. By analyzing the comparisons, we observed relationships of inclusion, intersection and disjunction within each pair of LGs, which helped us to assemble those that yielded the best results. This approach was used in a case study on extraction of person names from texts written in Portuguese. We applied the enhanced grammar to the Gold Collection of the Second HAREM. The F-Measure obtained was 76.86, representing a gain of 6 points in relation to the state-of-the-art for Portuguese.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.