Platelet transfusions are used in standard clinical practice to prevent hemorrhage in patients suffering from thrombocytopenia or platelet dysfunctions. Recently, a constant rise on the demand of platelets for transfusion has been registered. This may be associated with several factors including demographic changes, population aging as well as incidence and prevalence of hematological diseases. In addition, platelet-regenerative properties have been started to be exploited in different areas such as tissue remodeling and anti-cancer therapies. These new applications are also expected to increase the future demand on platelets. Thus, in vitro generated platelets may constitute a highly desirable alternative to meet the rising demand on platelets. Several factors have been considered in the road trip of producing in vitro megakaryocytes and platelets for clinical application. From selection of the cell source, differentiation protocols and culture conditions to the design of optimal bioreactors, several strategies have been proposed to maximize production yields while preserving functionality. This review summarizes new advances in megakaryocyte and platelet differentiation and their production upscaling.