2020
DOI: 10.3389/fncom.2020.00039
|View full text |Cite
|
Sign up to set email alerts
|

Crossing the Cleft: Communication Challenges Between Neuroscience and Artificial Intelligence

Abstract: Historically, neuroscience principles have heavily influenced artificial intelligence (AI), for example the influence of the perceptron model, essentially a simple model of a biological neuron, on artificial neural networks. More recently, notable recent AI advances, for example the growing popularity of reinforcement learning, often appear more aligned with cognitive neuroscience or psychology, focusing on function at a relatively abstract level. At the same time, neuroscience stands poised to enter a new era… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
8
0
2

Year Published

2020
2020
2022
2022

Publication Types

Select...
4
3
1

Relationship

1
7

Authors

Journals

citations
Cited by 16 publications
(10 citation statements)
references
References 67 publications
0
8
0
2
Order By: Relevance
“…The brain intelligence model is proposed to extend and advance contemporary AI in the light of human memory function (Lu et al 2018). Additionally, the big gap between AI and neuroscience is the culture to communicate with each other which will be solved to extend them further (Chance et al 2020). More reviews and reports remark and analyze that AI has been developing from brain science and also expedites it (Fan et al 2020;Hassabis et al 2017;Savage 2019;Shapshak 2018).…”
Section: Social Cognitionmentioning
confidence: 99%
“…The brain intelligence model is proposed to extend and advance contemporary AI in the light of human memory function (Lu et al 2018). Additionally, the big gap between AI and neuroscience is the culture to communicate with each other which will be solved to extend them further (Chance et al 2020). More reviews and reports remark and analyze that AI has been developing from brain science and also expedites it (Fan et al 2020;Hassabis et al 2017;Savage 2019;Shapshak 2018).…”
Section: Social Cognitionmentioning
confidence: 99%
“…Dies ist wichtig, wenn es beispielsweise um die Triage geht, d. h. um die Optimierung des Outcomes bei der Allokation knapper Ressourcen: Wenn nach einer Massenkarambolage 7 Schwerverletzte zugleich eintreffen, aber nur 4 Intensivbetten zur Verfügung stehen, sollte die Entscheidung, wer behandelt wird und wer nicht, nach rationalen Gesichtspunkten getroffen werden. 6 Gelöst wird es in aller Welt nach den gleichen Prinzipien. Wenn an der Lösung künstliche Intelligenz beteiligt ist (kein Mensch kann so viele Daten wie neuronale Netzwerke verarbeiten und dies ohne affektiv getönte und wertende (Vor-)Urteile), sagen die Amerikaner "der Computer entscheidet", wohingegen man in Europa eher sagt, "dass wir entscheiden, uns aber vom Computer unterstützen lassen".…”
unclassified
“…Применение ИНС в здравоохранении включает клиническую диагностику, прогнозирование, распознавание речи, анализ и интерпретацию изображений, автоматическую интерпретацию электрокардиограммы (ЭКГ) и разработку лекарств [5]. Первоначально математически описанные приемы обработки информации, осуществляемые биологическими нервными клетками, были использованы для создания структурных элементов ИНС, которые концептуально используются в нейробиологии и принадлежат к классу статистических процедур, раскрывают более сложные ассоциации, чем математические уравнения [6].…”
unclassified