2020
DOI: 10.1002/anie.201915053
|View full text |Cite
|
Sign up to set email alerts
|

Crosstalk‐Free Patterning of Cooperative‐Thermoresponse Images by the Synergy of the AIEgen with the Liquid Crystal

Abstract: Patterning multiple images within a single element without crosstalk can significantly increase the information capacity and security, but it is challenging to enable the response capability in each image. Now, the patterning of crosstalk‐free yet cooperative‐thermoresponse images (holographic and fluorescent images) is successfully achieved by designing a liquid crystal (LC)/AIEgen system with a unique synergy. The AIEgen's fluorescence intensity is controlled by the LC, while the LC's phase transition is in … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
74
0
1

Year Published

2020
2020
2022
2022

Publication Types

Select...
8
1

Relationship

2
7

Authors

Journals

citations
Cited by 71 publications
(75 citation statements)
references
References 41 publications
0
74
0
1
Order By: Relevance
“…Effect of ZnS on the electro-optical performance of HPNC. (a) Schematic illustration of mercaptoethanol-capped ZnS and the corresponding HPNC [48] ; (b) effect of content of mercaptoethanol-capped ZnS on the electro-optical response properties of HPNC (the content was varied from 0 to 8wt% with an interval of 2wt%) [48] ; (c) schematic illustration of LC-ZnS and the corresponding HPNC [53] ; (d) effect of LC-ZnS content on the electro-optical response properties of HPNC [53] 倪名立等人 [20] 还系统研究了多面体低聚倍半硅氧烷(POSS)的空间分布对 HPNC 光 8b),电光响应性能变差 [30] 。与之不同的是,单双键 POSS 仅略微增加了复合体系的黏 致复合材料的荧光量子产率较低(QY = 4%)。胡毅雄、郝兴天等人 [6] 基于金属配位作用, 种兼具全息图像存储功能和高效发光性能的 HPNC 为高端防伪应用提供了新思路。 图 9 基于超分子液晶金属大环的 HPNC 及其全息图像存储和荧光发射 [6] Figure 9 Holographic image storage and fluorescent emission in the HPNC that was based on supramolecular liquid-crystalline metallacycles [6] 6.2 全息和荧光双重图像的正交存储、无串扰显示及协同温敏响应 赵晔等人 [7,57] 利用四苯乙烯类聚集诱导发光分子(简称 AIEgen)与液晶小分子的协同 作用,率先实现了全息图像与荧光图像在 HPNC 中的正交存储、无串扰显示以及协同温 敏响应(图 10),为高端防伪应用提供了全新思路 [30] 。全息图像通过光引发阻聚剂诱导的 自由基聚合反应及聚合诱导相分离原理形成,荧光图像通过四苯乙烯基元的光环化反应 得到 [30] 图 10 基于 AIEgen 与液晶小分子的协同效应在 HPNC 中实现全息与荧光双重图像的正 交存储、无串扰显示以及协同温敏响应 [7] Figure 10 Orthogonal reconstruction, crosstalk-free display and cooperative-thermoresponse of holographic and fluorescent dual images in the HPNC via the synergy of AIEgen with the LC [7] 6.3 全息和上转换发光双重图像的正交存储与无串扰显示 上转换发光是通过长波长光激发、产生短波长发光的过程,发光稳定性好、发射带 宽窄、反斯托克斯位移大(>500 nm)、发光颜色可调范围宽、对背景干扰抵抗能力强, 在防伪领域具有重要应用 [30,58~63] 。张小梅 [19] 、罗文等人 [29] 分别采用镧系离子掺杂的棒状 上转换纳米粒子以及具有核壳结构的上转换纳米粒子制备了具有上转换发光功能的 HPNC。与液晶小分子(尺寸通常小于 2 nm)相比,这些上转换纳米粒子(upconversion nanoparticle, UCNP)尺寸大、扩散慢,在激光聚合诱导相分离过程中主要分布在富高分 子相(在相干亮区产生),而非富液晶相。由于上转换纳米粒子具有较低的折射率,这种 空间分布有利于在富高分子相与富液晶相之间产生较大的折射率差异,不仅使复合材料 能够存储高质量全息图像,也使复合材料在 980 nm 近红外光 (NIR) 激发下能够产生颜 色可调、强度较高的上转换发光(图 11a) [19,29] 。进一步地,倪名立等人 [37] 产生的上转换发光 [29] ; (b) 基于 UCNP 内核与 FITC 之间的能量转移效应以及 FITC 的光 漂白反应,实现全息和上转换发光双重图像在 HPNC 中的正交存储与无串扰显示 [37] Figure 11 HPNC with the upconversion emission function. (a) Holographic image storage and upconversion emission in the HPNC containing UCNP [29] ; (b) orthogonal reconstruction and crosstalk-free display of holographic and upconversion dual images in the HPNC, i...…”
Section: Figureunclassified
“…Effect of ZnS on the electro-optical performance of HPNC. (a) Schematic illustration of mercaptoethanol-capped ZnS and the corresponding HPNC [48] ; (b) effect of content of mercaptoethanol-capped ZnS on the electro-optical response properties of HPNC (the content was varied from 0 to 8wt% with an interval of 2wt%) [48] ; (c) schematic illustration of LC-ZnS and the corresponding HPNC [53] ; (d) effect of LC-ZnS content on the electro-optical response properties of HPNC [53] 倪名立等人 [20] 还系统研究了多面体低聚倍半硅氧烷(POSS)的空间分布对 HPNC 光 8b),电光响应性能变差 [30] 。与之不同的是,单双键 POSS 仅略微增加了复合体系的黏 致复合材料的荧光量子产率较低(QY = 4%)。胡毅雄、郝兴天等人 [6] 基于金属配位作用, 种兼具全息图像存储功能和高效发光性能的 HPNC 为高端防伪应用提供了新思路。 图 9 基于超分子液晶金属大环的 HPNC 及其全息图像存储和荧光发射 [6] Figure 9 Holographic image storage and fluorescent emission in the HPNC that was based on supramolecular liquid-crystalline metallacycles [6] 6.2 全息和荧光双重图像的正交存储、无串扰显示及协同温敏响应 赵晔等人 [7,57] 利用四苯乙烯类聚集诱导发光分子(简称 AIEgen)与液晶小分子的协同 作用,率先实现了全息图像与荧光图像在 HPNC 中的正交存储、无串扰显示以及协同温 敏响应(图 10),为高端防伪应用提供了全新思路 [30] 。全息图像通过光引发阻聚剂诱导的 自由基聚合反应及聚合诱导相分离原理形成,荧光图像通过四苯乙烯基元的光环化反应 得到 [30] 图 10 基于 AIEgen 与液晶小分子的协同效应在 HPNC 中实现全息与荧光双重图像的正 交存储、无串扰显示以及协同温敏响应 [7] Figure 10 Orthogonal reconstruction, crosstalk-free display and cooperative-thermoresponse of holographic and fluorescent dual images in the HPNC via the synergy of AIEgen with the LC [7] 6.3 全息和上转换发光双重图像的正交存储与无串扰显示 上转换发光是通过长波长光激发、产生短波长发光的过程,发光稳定性好、发射带 宽窄、反斯托克斯位移大(>500 nm)、发光颜色可调范围宽、对背景干扰抵抗能力强, 在防伪领域具有重要应用 [30,58~63] 。张小梅 [19] 、罗文等人 [29] 分别采用镧系离子掺杂的棒状 上转换纳米粒子以及具有核壳结构的上转换纳米粒子制备了具有上转换发光功能的 HPNC。与液晶小分子(尺寸通常小于 2 nm)相比,这些上转换纳米粒子(upconversion nanoparticle, UCNP)尺寸大、扩散慢,在激光聚合诱导相分离过程中主要分布在富高分 子相(在相干亮区产生),而非富液晶相。由于上转换纳米粒子具有较低的折射率,这种 空间分布有利于在富高分子相与富液晶相之间产生较大的折射率差异,不仅使复合材料 能够存储高质量全息图像,也使复合材料在 980 nm 近红外光 (NIR) 激发下能够产生颜 色可调、强度较高的上转换发光(图 11a) [19,29] 。进一步地,倪名立等人 [37] 产生的上转换发光 [29] ; (b) 基于 UCNP 内核与 FITC 之间的能量转移效应以及 FITC 的光 漂白反应,实现全息和上转换发光双重图像在 HPNC 中的正交存储与无串扰显示 [37] Figure 11 HPNC with the upconversion emission function. (a) Holographic image storage and upconversion emission in the HPNC containing UCNP [29] ; (b) orthogonal reconstruction and crosstalk-free display of holographic and upconversion dual images in the HPNC, i...…”
Section: Figureunclassified
“…Counterfeiting is a growing issue worldwide. To combat it, anticounterfeiting materials, such as digital water marks, [1,2] diffraction gratings, [3,4] photonic structures, [5][6][7][8][9] stimuli-responsive materials, [10][11][12][13][14][15] and luminescent materials, [16,17] have been developed for distinguishing banknotes, valuable products, important documents, etc. These anticounterfeiting materials alter their appearance, color, optical signal, or other properties in response to external stimuli, [1,18] and their responses can be observed by the naked eye or validated using analytical tools, thereby helping distinguish counterfeits from real ones.…”
Section: Introductionmentioning
confidence: 99%
“…[ 1,2 ] Inspired by these biological systems, many artificial materials capable of switching optical properties have been invented. Their underlying mechanisms are diverse, including notably photo‐luminescence, [ 3–6 ] photonic crystals, [ 7–9 ] and thermo‐/electro‐/mechanochromism. [ 10–13 ] This has led to many technological innovations such as biomedical sensing/imaging, [ 4,5 ] anticounterfeiting, [ 3 ] displays, [ 11,12 ] and smart windows.…”
Section: Introductionmentioning
confidence: 99%