Diquat and paraquat are non-specific defoliants that induce toxicity in many organs including the lung, liver, kidney and brain. This toxicity is thought to be due to the generation of reactive oxygen species (ROS). An important pathway leading to ROS production by these compounds is redox cycling. In the present studies, diquat and paraquat redox cycling was characterized using human recombinant NADPH-cytochrome P450 reductase, rat liver microsomes, and Chinese Hamster Ovary (CHO) cells constructed to overexpress cytochrome P450 reductase (CHO-OR) and wild type control cells (CHO-WT). In redox cycling assays with recombinant cytochrome P450 reductase and microsomes, diquat was 10-40 times more effective in generating ROS when compared to paraquat (KM = 1.0 and 44.2 μM, respectively for H2O2 generation by diquat and paraquat using recombinant enzyme, and 15.1 and 178.5 μM, respectively for microsomes). In contrast, at saturating concentrations, these compounds showed similar redox cycling activity (Vmax ≈ 6.0 nmoles H2O2/min/mg protein) for recombinant enzyme and microsomes. Diquat and paraquat also redox cycle in CHO cells. Significantly more activity was evident in CHO-OR cells than CHO-WT cells. Diquat redox cycling in CHO cells was associated with marked increases in protein carbonyl formation, a marker of protein oxidation, as well as cellular oxygen consumption, measured using oxygen microsensors; greater activity was detected in CHO-OR cells than CHO-WT cells. These data demonstrate that ROS formation during diquat redox cycling can generate oxidative stress. Enhanced oxygen utilization during redox cycling may reduce intracellular oxygen available for metabolic reactions and contribute to toxicity.