Diseases and injuries of the musculoskeletal system rank second among the causes of injuries and third among the diseases that lead to disability of the adult population. Orthopedic implants have a special place in both clinical practice and the biomedical industry. The implants capable of biodegrading in the case of their implantation into the human body are of the greatest interest. The concept of biodegra-dable implants appeared through the formation and development of the use of suture materials that are absorbed in the body. Subsequently, this type of material began to be used in the treatment of fractures, because in many cases, bone fragments need only temporary support with a fixator, until they fuse. Implantable internal fixation devices for fracture repair using polyglycolic acid (PGA), polylactic acid (PLA), and a copolymer of lactic acid and glycolide (PLGA) became popular. However, the mechanical properties of highly porous skeletons were relatively weak compared to those required for bone engineering. In the process of creating an optimal polymeric biodegradable material, it is necessary to overcome the contradiction between strength and biodegradation. PGA, providing high strength of fixation, degrade too quickly, and PLGA, having high crystallinity, slightly degrade, at the same time conceding on the durability of both PGA and biostable materials. Scientists are now working hard to develop composites from calcium phosphate and polymer, in particular hydroxyapatite and tricalсium phosphate (TCP). TCP with three polymorphic modifications, in particular α-TCP, β-TCP, and α'-TCP, is a well-known bioceramic substance for bone repair. β-TKP is attracting increasing attention due to its excellent biocompatibility, bioactivity, and biodegradability. The composite materials based on bioactive ceramics mainly refer to materials with additional advantages, such as biodegradable polymers and ceramics. At the same time, these composites are biocompatible, osteoconductive, mechanical strength and have osteogenic characteristics. At the same time, thanks to new manufacturing technologies that have emerged in recent years, these compo-site materials are the most promising in the field of bone defect repair. The treatment of fractures with implants is increasingly associated with composite materials. Biomaterials must have certain mechanical properties: biocompatibility, biodegradation, controlled rate biodegradation, good mechanical strength, and bioactivity. Biomaterials used in the treatment of bone fractures have to disintegrate over time, and the addition of nanofillers can slow down the rate of decay of the biodegradable composite.