The solubilities of beta-cyclodextrin (beta-CD), ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6), and their mixture in water were determined, and the conductivity of these aqueous solutions was measured. It was demonstrated that beta-CD and bmimPF6 could enhance the solubility of each other, and the solubility curves of each were linear with gradients of about 1. The conductivity decreased remarkably with increasing beta-CD concentration, and a discernible break in the conductivity curve could be observed when beta-CD and bmimPF6 were equimolar in the solution. The solubility and conductivity results indicated that inclusion complexes (ICs) of 1:1 stoichiometry were formed. The inclusion compounds were further characterized by using powder X-ray diffraction (XRD) analysis, 13C CP/MAS (cross-polarization magic-angle spinning) NMR and 1H NMR spectroscopy, and thermogravimetric analysis (TGA). The results showed that the ICs were a fine crystalline powder. The host-guest system exhibited a channel-type structure and each glucose unit of beta-CD was in a similar environment. The decomposition temperature of the ICs was lower than that of bmimPF6 and beta-CD individually.