Zimomra ZR, Porterfield VM, Camp RM, Johnson JD. Time-dependent mediators of HPA axis activation following live Escherichia coli . Am J Physiol Regul Integr Comp Physiol 301: R1648-R1657, 2011. First published September 14, 2011 doi:10.1152/ajpregu.00301.2011.-The hypothalamus-pituitary-adrenal (HPA) axis is activated during an immune challenge to liberate energy and modulate immune responses via feedback and regulatory mechanisms. Inflammatory cytokines and prostaglandins are known contributors to HPA activation; however, most previous studies only looked at specific time points following LPS administration. Since whole bacteria have different immune stimulatory properties compared with LPS, the aim of the present studies was to determine whether different immune products contribute to HPA activation at different times following live Escherichia coli challenge. Sprague-Dawley rats were injected intraperitoneally with E. coli (2.5 ϫ 10 7 CFU) and a time course of circulating corticosterone, ACTH, inflammatory cytokines, and PGE2 was developed. Plasma corticosterone peaked 0.5 h after E. coli and steadily returned to baseline by 4 h. Plasma PGE2 correlated with the early rise in plasma corticosterone, whereas inflammatory cytokines were not detected until 2 h. Pretreatment with indomethacin, a nonselective cyclooxygenase inhibitor, completely blocked the early rise in plasma corticosterone, but not at 2 h, whereas pretreatment with IL-6 antibodies had no effect on the early rise in corticosterone but attenuated corticosterone at 2 h. Interestingly, indomethacin pretreatment did not completely block the early rise in corticosterone following a higher concentration of E. coli (2.5 ϫ 10 8 CFU). Further studies revealed that only animals receiving indomethacin prior to E. coli displayed elevated plasma and liver cytokines at early time points (0.5 and 1 h), suggesting prostaglandins suppress early inflammatory cytokine production. Overall, these data indicate prostaglandins largely mediate the early rise in plasma corticosterone, while inflammatory cytokines contribute to maintaining levels of corticosterone at later time points.corticosterone; prostaglandin; IL-6; indomethacin ACTIVATION OF THE hypothalamus-pituitary-adrenal (HPA) axis is one of the critical brain-mediated sickness responses that enhance survival of an organism during an immune challenge. The resulting elevation in circulating glucocorticoids, mainly cortisol in humans and corticosterone in mice and rats, liberate energy necessary to mount a fever and have numerous immunomodulatory effects that reduce the risk of septic shock and increase the chances of survival during infection (52, 53). For example, glucocorticoids suppress proinflammatory cytokines (2, 17, 34) and prostaglandin production (27, 38), stimulate anti-inflammatory cytokine production (16, 20), upregulate Fc receptors and major histocompatibility complex class II molecules on phagocytes (24), increase cell adhesion molecules on endothelial cells (57), enhance acute phase changes in t...