Reactions of C(6)H(5)Li and 4-CH(3)C(6)H(4)Li with halides of Ti, Ir, Hf, and Nb lead to the formation of homoleptic organometallic anions of these metals. Owing to their thermal instability and their sensitivity towards H(2) O and O(2) , these compounds are characterized by single-crystal structure determinations at low temperature, whereas other physical data could only be obtained occasionally. Three pentacoordinate complex anions [Ti(C(6)H(5))(5)](-), [Ti(4-CH(3)C(6)H(4))(5)](-), and [Zr(C(6)H(5))(5)](-) have square-pyramidal structures that display only slight deviations from the ideal geometry, in contrast to the already known structures of [Ti(CH(5))(5)](-). The hexacoordinate complex anions [Zr(C(6)H(5))(6)](2-), [Zr(4-CH(3)C(6)H(4))(6)](2-), [Nb(C(6)H(5))(6)](2-), and [Nb(4-CH(3)C(6)H(4))(6)](2-) all have trigonal-prismatic structures, in accord with the known hexamethyl complex dianions. In contrast, the hexacoordinate complex anion [Hf(C(6)H(5))(6)](2)(-) has an octahedral or close to octahedral structure, in contrast to the known trigonal-prismatic structures of [Ta(C(6)H(5))(6)](-) and [Ta(4-CH(3)C(6)H(4))(6) (-). A qualitative explanation for this structural variability is given.