2021
DOI: 10.1016/j.dib.2021.107067
|View full text |Cite
|
Sign up to set email alerts
|

Data extraction of the gray level Co-occurrence matrix (GLCM) Feature on the fingerprints of parents and children in Lombok Island, Indonesia

Abstract: Fingerprint data of parents and children were taken directly from Lombok, Indonesia. This dataset was collected from 30 families consisting of father's, mother's, and child's fingerprints. The data were collected from one family to another, with and without a kinship relationship. It was collected with a U are U 4500 SDK Digital Persona and extracted using the feature extraction method from the Gray Level Co-occurrence Matrix (GLCM). This dataset of parent and child fingerprint data can be used in research to … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(8 citation statements)
references
References 5 publications
0
6
0
2
Order By: Relevance
“…The GLCM is a square matrix representing the frequency of specified pairings of gray levels, G(i, j) co-occurring in a given image or an image segment horizontally, vertically, or diagonally. In texture feature calculations, the GLCM matrix is used to figure out how the intensity changes at the pixel of interest [ 26 , 27 ]. Figure 4 illustrates the computation of GLCM for a given image.…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…The GLCM is a square matrix representing the frequency of specified pairings of gray levels, G(i, j) co-occurring in a given image or an image segment horizontally, vertically, or diagonally. In texture feature calculations, the GLCM matrix is used to figure out how the intensity changes at the pixel of interest [ 26 , 27 ]. Figure 4 illustrates the computation of GLCM for a given image.…”
Section: Methodsmentioning
confidence: 99%
“…In the proposed methodology, the GLCM algorithm takes the segmented gray level images as input and outputs the following statistical features [ 26 , 27 , 28 ].…”
Section: Methodsmentioning
confidence: 99%
“…GLCM dibangun dari citra grayscale dari dengan menghitung jumlah ketetanggaan antara dua derajat keabuan dengan distance 1 dan orientasi sudut 0º, 45º, 90º, dan 135º (Bakti et al, 2021). Pada metode ini digunakan 6 fitur, yaitu contrast, dissimilarity, homogeneity, ASM, energy, dan correlation (Haryanto et al, 2020) yang didefinisikan pada Persamaan ( 12) sampai ( 17).…”
Section: Ekstraksi Fitur Glcmunclassified
“…Co-Occurrence dapat diartikan sebagai kejadian bersama, berarti banyaknya kejadian pada satu level piksel yang bertetanggan dengan nilai piksel yang lainnya berdasarkan jarak (d) dan orientasi suatu sudut (θ), jarak direpresentasikan sebagai piksel dan orientasi direpresentasikan dalam derajat, orientasi sudut terbentuk dari empat arah yaitu 0 o , 45 o , 90 o dan 135 o dengan d=1 sebagai jarak antar piksel (R. A. Surya, A. Fadlil, & A. Yudhana, 2017) ( Bakti, et al, 2021). Dalam penggunaan GLCM terdapat beberapa konsep yang perlu dipertimbangkan, yaitu; kontras, korelasi, energy dan Homogeneity.…”
Section: Gray Level Co-ocurrence Matrix (Glcm)unclassified