“…When V is a finite set of points and each object in F is an arbitrary finite subset of V, we obtain the well-known hypergraph transversal or dualization problem [2], which calls for finding all minimal hitting sets for a given hypergraph G ⊆ 2 V , defined on a finite set of vertices V. Denote by Tr(G) the set of all minimal hitting sets of G, also known as the transversal hypergraph of G. The problem of finding Tr(G) has received considerable attention in the literature (see, e.g., [3,12,13,19,29,31]), since it is known to be polynomially or quasi-polynomially equivalent with many problems in various areas, such as artificial intelligence (e.g., [12,24]), database theory (e.g., [30]), distributed systems (e.g., [23]), machine learning and data mining (e.g., [1,7,20]), mathematical programming (e.g., [5,25]), matroid theory (e.g., [26]), and reliability theory (e.g., [9]). …”