Moving target ship imaging in large sea area has always been the focus of military and civilian attention. Due to the limitation of pulse repetition frequency (PRF), there is a contradiction between wide mapping band and azimuth accuracy. The nonlinearity of PRF can also cause discontinuity of mapping band. Therefore, this paper proposes a method of digital beamforming-scan on receiving (DBF-SCORE) beam scanning based on airborne phased array radar to achieve the requirement of scene mapping band with lower PRF. The adaptive Capon spectrum estimation is used to dynamically adjust the beam pointing so that it can always point to the moving target for accurate imaging. Considering the nonuniform sampling of the transmitting pulse period of the antenna, the azimuth nonuniform Fourier transform (NUDFT) algorithm is used to re-sample the nonuniform periodic signal of the multi-channel receiving antenna and obtain the uniform spectrum signal. Finally, fine focusing of moving target is achieved by local phase gradient algorithm (PGA) algorithm, and accurate imaging of moving target in large sea area is realized. The validity of the algorithm can be verified by simulation and real data imaging, which can be used for reference in phased array SAR imaging of moving targets.