Abstract. We prove that the group of normalized cohomological invariants of degree 3 modulo the subgroup of semidecomposable invariants of a semisimple split linear algebraic group G is isomorphic to the torsion part of the Chow group of codimension 2 cycles of the respective versal G-flag. In particular, if G is simple, we show that this factor group is isomorphic to the group of indecomposable invariants of G. As an application, we construct nontrivial cohomological classes for indecomposable central simple algebras.