The first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module M produce these decompositions: the lattice decompositions. In a first étage this can be done using endomorphisms of M , which produce a decomposition of the ring End R (M ) as a product of rings, i.e., they are central idempotent endomorphisms. But since not every central idempotent endomorphism produces a lattice decomposition, the classical theory is not of application. In a second step we characterize when a particular module M has a lattice decomposition; this can be done, in the commutative case in a simple way using the support, Supp(M ), of M ; but, in general, it is not so easy. Once we know when a module decomposes, we look for characterizing its decompositions. We show that a good framework for this study, and its generalizations, could be provided by the category σ[M ], the smallest Grothendieck subcategory of Mod − R containing M .