2020
DOI: 10.5753/rbie.2020.28.0.723
|View full text |Cite
|
Sign up to set email alerts
|

Deep learning for early performance prediction of introductory programming students: a comparative and explanatory study

Abstract: Introductory programming may be complex for many students. Moreover, there is a high failure and dropout rate in these courses. A potential way to tackle this problem is to predict student performance at an early stage, as it facilitates human-AI collaboration towards prescriptive analytics, where the instructors/monitors will be told how to intervene and support students - where early intervention is crucial. However, the literature states that there is no reliable predictor yet for programming students’ perf… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

1
26
0
7

Year Published

2021
2021
2024
2024

Publication Types

Select...
3
3
1

Relationship

2
5

Authors

Journals

citations
Cited by 26 publications
(34 citation statements)
references
References 40 publications
1
26
0
7
Order By: Relevance
“…In previous works [45], [47], [48], we have composed a set of data-driven features that, in conjunction, have a high predictive power to infer the students' performance, even when using early data, from the first two weeks of a course. Our previous ML model [48] achieved an average accuracy of 78.2% with this early data, outperforming cutting edge results for this task [1], [12], [18], [20], [30], [33], [53], [68], [71].…”
Section: B Machine Learning Modelsmentioning
confidence: 99%
See 2 more Smart Citations
“…In previous works [45], [47], [48], we have composed a set of data-driven features that, in conjunction, have a high predictive power to infer the students' performance, even when using early data, from the first two weeks of a course. Our previous ML model [48] achieved an average accuracy of 78.2% with this early data, outperforming cutting edge results for this task [1], [12], [18], [20], [30], [33], [53], [68], [71].…”
Section: B Machine Learning Modelsmentioning
confidence: 99%
“…Their results pointed to tree-based ensembles being more suitable for our data. As an extension, in [45] we surpassed [48], obtaining an average accuracy of 82.2%, by using a deep learning architecture. Between the model presented in this current paper using XGBoost (with average accuracy of 81.3%) and our previous best result using deep learning, we did not find statistical significance (p-value>0.05).…”
Section: B Machine Learning Modelsmentioning
confidence: 99%
See 1 more Smart Citation
“…Embora nomes diferentes sejam usados para representar as dificuldades dos alunos em aprender a programar, há um consenso geral de que é importante ajudar os alunos a desenvolver sua compreensão conceitual e superar desafios [4,14,15,23,27,28,30,35]. Para isso, é vital para o ensino das disciplinas introdutórias de programação saber quais são os misconceptions comuns [1,[14][15][16] para dar suporte aos professores, já que com essa informação os docentes podem adaptar sua metodologia com aulas que possam potencialmente minimizar a ocorrência desses erros de compreensão, atuando assim de forma preventiva.…”
Section: Introductionunclassified
“…Para isso, é vital para o ensino das disciplinas introdutórias de programação saber quais são os misconceptions comuns [1,[14][15][16] para dar suporte aos professores, já que com essa informação os docentes podem adaptar sua metodologia com aulas que possam potencialmente minimizar a ocorrência desses erros de compreensão, atuando assim de forma preventiva. Além disso, uma análise dos erros comuns pode propiciar uma intervenção precoce manual ou automática, aplicando-se abordagens e ferramentas instrucionais eficazes para dirimir potenciais dificuldades enfrentadas pelos alunos [22,23,35,36,40]. Diante dos potenciais benefícios, em um estudo recente, Qian et al [30] apontam que existe uma escassez de instrumentos de medição concretos e estudos empíricos que mapeiem e avaliem misconceptions comuns.…”
Section: Introductionunclassified