Growth of 2D van der Waals layered singleâcrystal (SC) films is highly desired not only to manifest the intrinsic physical and chemical properties of materials, but also to enable the development of unprecedented devices for industrial applications. While waferâscale SC hexagonal boron nitride film has been successfully grown, an ideal growth platform for diatomic transition metal dichalcogenide (TMdC) films has not been established to date. Here, the SC growth of TMdC monolayers on a centimeter scale via the atomic sawtooth gold surface as a universal growth template is reported. The atomic toothâgullet surface is constructed by the oneâstep solidification of liquid gold, evidenced by transmission electron microscopy. The anisotropic adsorption energy of the TMdC cluster, confirmed by densityâfunctional calculations, prevails at the periodic atomicâstep edge to yield unidirectional epitaxial growth of triangular TMdC grains, eventually forming the SC film, regardless of the Miller indices. Growth using the atomic sawtooth gold surface as a universal growth template is demonstrated for several TMdC monolayer films, including WS2, WSe2, MoS2, the MoSe2/WSe2 heterostructure, and W1âxMoxS2 alloys. This strategy provides a general avenue for the SC growth of diatomic van der Waals heterostructures on a wafer scale, to further facilitate the applications of TMdCs in postâsilicon technology.