High‐entropy (HE) oxides have become increasingly popular as electromagnetic wave‐absorbing materials owing to their customizable structure and unique HE effects. However, the weak loss property of single‐phase HE ceramics and the approaches implemented to improve them based on semi‐empirical rules severely limit their development. Herein, two biphasic HE oxides are prepared by simple sintering to realize accurate regulation of crystal phases and structural defects. It is verified that HE effects cause various defects that are beneficial for microwave dissipation within complex‐phase ceramics. In spinel/perovskite HE oxides, around the interface of spinel (111) and perovskite (110) planes, notable stress concentrations and lattice distortions are directly observed, inducing numerous point defects and stacking faults. Interestingly, besides the existing heterogeneous interface of rock salt (220)/spinel (220) plane and defects, rock salt/spinel HE oxides enabled synergistic effects via the precise regulation of components’ phase. Driven by structural defects and multi‐phases in HE complexes, the intense polarization is evidently found, confirmed by the first‐principles calculations. Accordingly, the two complex‐phase HE oxides demonstrate excellent microwave absorption performance, and the minimal reflection loss of −54.5 dB is achieved. Therefore, this study provides valuable guidelines for the design of microwave absorbers using HE oxides.