The last decade has witnessed significant advances in energy harvesting technologies as a possible alternative to provide a continuous power supply for small, low-power devices in applications, such as wireless sensing, data transmission, actuation, and medical implants. Piezoelectric energy harvesting (PEH) has been a salient topic in the literature and has attracted widespread attention from researchers due to its advantages of simple architecture, high power density, and good scalability. This paper presents a comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Various key aspects to improve the overall performance of a PEH device are discussed, including basic fundamentals and configurations, materials and fabrication, performance enhancement mechanisms, applications, and future outlooks.