Abstract:We introduce the class of dense relations on a set X and prove that for any finitary or infinitary dense relation Ω on X, the relational system (X, Ω) is determined up to semi-isomorphism by the monoid End (X, Ω) of endomorphisms of (X, Ω). In the case of binary relations, a semi-isomorphism is an isomorphism or an anti-isomorphism.2000 Mathematics Subject Classification: 20M20, 20M15.
“…We proved that U S (Z n ) = U ± S (Z n ), and the result follows by Theorem 4.12. {(1, 2), (1,8), (1,11), (2,4), (2,7), (2,8), (4,8), (4,14), (7,11), . .…”
A reflexive digraph is a pair (X, ρ), where X is an arbitrary set and ρ is a reflexive binary relation on X.Let End (X, ρ) be the semigroup of endomorphisms of (X, ρ). We determine the group of automorphisms of End (X, ρ) for: digraphs containing an edge not contained in a cycle, digraphs consisting of arbitrary unions of cycles such that cycles of length ≥ 2 are pairwise disjoint, and some circulant digraphs.
“…We proved that U S (Z n ) = U ± S (Z n ), and the result follows by Theorem 4.12. {(1, 2), (1,8), (1,11), (2,4), (2,7), (2,8), (4,8), (4,14), (7,11), . .…”
A reflexive digraph is a pair (X, ρ), where X is an arbitrary set and ρ is a reflexive binary relation on X.Let End (X, ρ) be the semigroup of endomorphisms of (X, ρ). We determine the group of automorphisms of End (X, ρ) for: digraphs containing an edge not contained in a cycle, digraphs consisting of arbitrary unions of cycles such that cycles of length ≥ 2 are pairwise disjoint, and some circulant digraphs.
“…Например, Л. Б. Шнеперман (см. [6]) показал, что результат Глускина невозможно перенести на класс всех рефлексивных бинарных отношений, в то время как в [7] упомянутый результат был распространен на так называемые плотные отношения, а в [8] -на некоторый подкласс рефлексивных бинарных отношений. Подобные результаты для определенных µ-арных отношений были получены Б. В. Поповым (см.…”