2005
DOI: 10.1007/s00233-004-0164-7
|View full text |Cite
|
Sign up to set email alerts
|

Dense Relations Are Determined by Their Endomorphism Monoids

Abstract: We introduce the class of dense relations on a set X and prove that for any finitary or infinitary dense relation Ω on X, the relational system (X, Ω) is determined up to semi-isomorphism by the monoid End (X, Ω) of endomorphisms of (X, Ω). In the case of binary relations, a semi-isomorphism is an isomorphism or an anti-isomorphism.2000 Mathematics Subject Classification: 20M20, 20M15.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2007
2007
2017
2017

Publication Types

Select...
7

Relationship

2
5

Authors

Journals

citations
Cited by 12 publications
(4 citation statements)
references
References 6 publications
0
2
0
2
Order By: Relevance
“…We proved that U S (Z n ) = U ± S (Z n ), and the result follows by Theorem 4.12. {(1, 2), (1,8), (1,11), (2,4), (2,7), (2,8), (4,8), (4,14), (7,11), . .…”
Section: Lemma 416mentioning
confidence: 99%
“…We proved that U S (Z n ) = U ± S (Z n ), and the result follows by Theorem 4.12. {(1, 2), (1,8), (1,11), (2,4), (2,7), (2,8), (4,8), (4,14), (7,11), . .…”
Section: Lemma 416mentioning
confidence: 99%
“…Например, Л. Б. Шнеперман (см. [6]) показал, что результат Глускина невозможно перенести на класс всех рефлексивных бинарных отношений, в то время как в [7] упомянутый результат был распространен на так называемые плотные отношения, а в [8] -на некоторый подкласс рефлексивных бинарных отношений. Подобные результаты для определенных µ-арных отношений были получены Б. В. Поповым (см.…”
Section: ю в жучок е а тоичкинаunclassified
“…The description of automorphisms has a long tradition in mathematics. Regarding automorphisms of semigroups, the pioneering work of Schreier [36] and Mal'cev [32] -proving that the group of automorphisms of the full transformation monoid T n is isomorphic to the symmetric group S n -was followed by a long sequence of similar descriptions (see [1,4,5,6,8,9,7,10,11,12,22,25,26,27,30,31,33,37,38,39,45] and the references therein). The effort to find the automorphisms of transformation semigroups containing all constants culminated in 1972 with the description, provided by Vazenin [41], of the automorphisms of the endomorphism monoid End(Γ), where Γ is a reflexive digraph containing an edge that is not contained in a cycle (of length at least 2).…”
Section: Introductionmentioning
confidence: 99%