Si x N y /Ni thin film green mask blanks were developed , and are now going to be used to replace general chromium film used for binary mask as well as to replace molydium silicide embedded material for AttPSM for I-line (365 nm), KrF (248 nm), ArF (193 nm) and Contact/Proximity lithography. A bilayer structure of a 1 nm thick opaque, conductive nickel layer and a Si x N y layer is proposed for binary and phase-shifting mask. With the good controlling of plasma CVD of Si x N y under silane (50 sccm), ammonia (5 sccm) and nitrogen (100 sccm), the pressure is 250 mTorr. and RF frequency 13.56 MHz and power 50 W. Si x N y has enough deposition latitude to meet the requirements as an embedded layer for required phase shift 180 degree, and the T% in 193, 248 and 365 nm can be adjusted between 2 % to 20 % for binary and phase shifting mask usage. Ni can be deposited by E-gun, its sheet resistance Rs is less than 1.435 kΩ/square. Jeol ebeam system and I-line stepper are used to evaluate these thin film green mask blanks, feature size less than 200 nm half pitch pattern and 0.558 μm pitch contact hole can be printed. Transmission spectrums of various thickness of Si x N y film are inspected by using UV spectrometer and FTIR. Optical constants of the Si x N y film are measured by n & k meter and surface roughness is inspected by using Atomic Force Microscope (AFM).