The article presents the results of the compatibility of collagen and Na-CMC at various ratios. The study of the structure of the biopolymer composition collagen/Na-CMC/glycerol showed their full compatibility. For the first time, films were obtained from a collagen/Na-CMC/glycerol solution in an aqueous medium, which simplifies the technology for obtaining medicinal films and improves their bioavailability. Using electron microscopy and viscometric studies, the optimal ratio of collagen and Na-CMC 70/30 was chosen, at which materials with strength and viscosity suitable for the formation of a film material were obtained. The optimal concentration of the plasticizer glycerin – 17% – was selected and the physicochemical properties of the films were studied. It has been established that with a decrease in the concentration of glycerol below 17%, the elastic properties of the film deteriorate; an increase in the concentration of more than 17% does not improve the elasticity of the film, but leads to an overuse of the plasticizer. As a result of double plasticization, it is possible to obtain films with good plasticity, which is achieved due to the good compatibility of glycerol with Na-CMC. The microstructure of the films was studied by atomic force microscopy. It has been established that when Na-CMC and glycerol are added to the collagen mass in the established ratios, the uniformity of the films is observed due to the loosening of the collagen microstructure. The biological efficiency of the obtained films was evaluated under the conditions of the development of adhesions in laboratory animals in vivo. The results of the study of anti-adhesion activity indicate the high efficiency of the developed P-3 film for preventing adhesion formation after surgical interventions.