Complex system science has recently shifted its focus to include modeling, simulation, and behavior control. An effective simulation software built on robot operating system (ROS) is used in robotics development to facilitate the smooth transition between the simulation environment and the hardware testing of control behavior. In this paper, we demonstrate how the simultaneous localization and mapping (SLAM) algorithm can be used to allow a robot to navigate autonomously. The Gazebo is used to simulate the robot, and Rviz is used to visualize the simulated data. The G-mapping package is used to create maps using collected data from a variety of sensors, including laser and odometry. To test and implement autonomous navigation, a Turtlebot was used in a Gazebo-generated simulated environment. In our opinion, additional study on ROS using these important tools might lead to a greater adoption of robotics tests performed, further evaluation automation, and efficient robotic systems.