Titanium and its alloys are often used for corrosion protection because they are able to offer high chemical resistance against various corrosive media. In this paper, shrouded plasma spray technology was applied to produce titanium coatings. A solid shroud with an external shrouding gas was used to plasma spray titanium powder feedstock with aim of reducing the oxide content in the as-sprayed coatings. The titanium coatings were assessed by optical microscope, scanning electron microscopy, X-ray diffraction, LECO combustion method and Vickers microhardness testing. The results showed that the presence of the shroud and the external shrouding gas led to a dense microstructure with a low porosity in the plasma-sprayed titanium coatings. The oxygen and nitrogen contents in the titanium coating were kept at a low level due to the shielding effect of the shroud attachment and the external shrouding gas. The dominant phase in the shrouded titanium coatings was mainly composed of α-Ti phase, which was very similar to the titanium feedstock powders. The shrouded plasma-sprayed titanium coatings had a Vickers microhardness of 404.2 ± 103.2 HV.